sccala.gen_testdata =================== .. py:module:: sccala.gen_testdata Functions --------- .. autoapisummary:: sccala.gen_testdata.generate_observed_data sccala.gen_testdata.detection_probability sccala.gen_testdata.gen_testdata sccala.gen_testdata.main sccala.gen_testdata.cli Module Contents --------------- .. py:function:: generate_observed_data(zrange, vel_range=(7100000.0, 725000.0), col_range=(0.5, 0.06), ae_range=(0.31, 0.13), verr=np.sqrt(200000.0**2 + 150000.0**2), cerr=0.05, aeerr=0.013, r_err=0.0001, alpha=3.4, beta=1.8, gamma=-1.5, mi=-1.6, sint=0.25, rng=None, hubble=False, calib=False, h0=70.0) .. py:function:: detection_probability(mag, m_cut=21, sigma_cut=0.5) .. py:function:: gen_testdata(zrange, save, size=250, plots=False, hubble=False, zrange_hubble=(0.001, 0.005), hubble_size=25, h0=70.0, alpha=3.4, beta=1.8, gamma=-1.5, mi=-1.6, sint=0.25, vel_range=(7100000.0, 725000.0), col_range=(0.5, 0.06), ae_range=(0.31, 0.13), verr=np.sqrt(200000.0**2 + 150000.0**2), cerr=0.05, aeerr=0.013, r_err=0.0001, m_cut=21, sigma_cut=0.5, calib_m_cut=21, calib_sigma_cut=0.5, m_cut_nom=None, sig_cut_nom=None, calib_m_cut_nom=None, calib_sig_cut_nom=None) Function generating simulated datasets for standardisation Parameters ---------- zrange : list or tuple Lower and upper limit of redshift interval for which testdata is to be generated save : str Filename under which data will be saved size : int Number of simulated SNe to generate. Default: 250 plots : bool Specified is diagnostic plots are to be generated. WARNING: Will output plot to current working directory. Any existing plots with the same names will be overwritten. Default: False hubble : bool If True, a calibrator sample will be generated as well. Default: False zrange_tuple : list or tuple Lower and upper limit of redshift interval for which calibrator testdata is to be generated. Default: (0.001, 0.005) hubble_size : int Number of simulated calibrator SNe. Default: 25 h0 : float Value of the Hubble constant used for simulating calibrator sample. Default: 70.0 alpha : float beta : float gamma : float mi : float sint : float Parameters for the calculation of the magnitudes. vel_range : tuple col_range : tuple ae_range : tuple Parameters for the generation of the observed data. verr : float cerr : float aeerr : float r_err : float Parameters for the calculation of the magnitude errors. m_cut : float sigma_cut : float calib_m_cut : float calib_sigma_cut : float Parameters for the detection probability. m_cut_nom : float sig_cut_nom : float calib_m_cut_nom : float calib_sig_cut_nom : float Parameters for the nominal detection values exported to the data. Returns ------- data : pd.DataFrame DataFrame containing the simulated testdata .. py:function:: main(args) .. py:function:: cli()