sccala.gen_testdata

Functions

generate_observed_data(zrange[, vel_range, col_range, ...])

detection_probability(mag[, m_cut, sigma_cut])

gen_testdata(zrange, save[, size, plots, hubble, ...])

Function generating simulated datasets for standardisation

main(args)

cli()

Module Contents

sccala.gen_testdata.generate_observed_data(zrange, vel_range=(7100000.0, 725000.0), col_range=(0.5, 0.06), ae_range=(0.31, 0.13), verr=np.sqrt(200000.0**2 + 150000.0**2), cerr=0.05, aeerr=0.013, r_err=0.0001, alpha=3.4, beta=1.8, gamma=-1.5, mi=-1.6, sint=0.25, rng=None, hubble=False, calib=False, h0=70.0)
sccala.gen_testdata.detection_probability(mag, m_cut=21, sigma_cut=0.5)
sccala.gen_testdata.gen_testdata(zrange, save, size=250, plots=False, hubble=False, zrange_hubble=(0.001, 0.005), hubble_size=25, h0=70.0, alpha=3.4, beta=1.8, gamma=-1.5, mi=-1.6, sint=0.25, vel_range=(7100000.0, 725000.0), col_range=(0.5, 0.06), ae_range=(0.31, 0.13), verr=np.sqrt(200000.0**2 + 150000.0**2), cerr=0.05, aeerr=0.013, r_err=0.0001, m_cut=21, sigma_cut=0.5, calib_m_cut=21, calib_sigma_cut=0.5, m_cut_nom=None, sig_cut_nom=None, calib_m_cut_nom=None, calib_sig_cut_nom=None)

Function generating simulated datasets for standardisation

Parameters

zrangelist or tuple

Lower and upper limit of redshift interval for which testdata is to be generated

savestr

Filename under which data will be saved

sizeint

Number of simulated SNe to generate. Default: 250

plotsbool

Specified is diagnostic plots are to be generated. WARNING: Will output plot to current working directory. Any existing plots with the same names will be overwritten. Default: False

hubblebool

If True, a calibrator sample will be generated as well. Default: False

zrange_tuplelist or tuple

Lower and upper limit of redshift interval for which calibrator testdata is to be generated. Default: (0.001, 0.005)

hubble_sizeint

Number of simulated calibrator SNe. Default: 25

h0float

Value of the Hubble constant used for simulating calibrator sample. Default: 70.0

alpha : float beta : float gamma : float mi : float sint : float

Parameters for the calculation of the magnitudes.

vel_range : tuple col_range : tuple ae_range : tuple

Parameters for the generation of the observed data.

verr : float cerr : float aeerr : float r_err : float

Parameters for the calculation of the magnitude errors.

m_cut : float sigma_cut : float calib_m_cut : float calib_sigma_cut : float

Parameters for the detection probability.

m_cut_nom : float sig_cut_nom : float calib_m_cut_nom : float calib_sig_cut_nom : float

Parameters for the nominal detection values exported to the data.

Returns

datapd.DataFrame

DataFrame containing the simulated testdata

sccala.gen_testdata.main(args)
sccala.gen_testdata.cli()