sccala.interplib.interpolators

Classes

Interpolator

LC_Interpolator

AKS_Interpolator

Vel_Interpolator

AE_Interpolator

Module Contents

class sccala.interplib.interpolators.Interpolator
get_toe_rnd(tkde, toe_samples, toe=0.0)
sample_posterior(num_live_points=800)
log_likelihood(params)
reject_invalid(data_int, dint, no_reject)
check_sample_size(size, toe_samples)
predict_from_posterior(t_pred, tkde=None, toe=0.0, size=100, no_reject=False, toe_samples=25)
_print_predicting()
class sccala.interplib.interpolators.LC_Interpolator(data, data_error, t_grid, num_live_points=800, disable_mean_fit=False, disable_white_noise_fit=False)

Bases: Interpolator

data
data_error
t_grid
num_live_points = 800
disable_mean_fit = False
disable_white_noise_fit = False
parameters = []
gp
prior_transform(cube)
_print_predicting()
class sccala.interplib.interpolators.AKS_Interpolator(data, t_grid, uncertainty=0.004, num_live_points=400, disable_mean_fit=False)

Bases: Interpolator

data
t_grid
uncertainty = 0.004
num_live_points = 400
disable_mean_fit = False
parameters = []
gp
prior_transform(cube)
_print_predicting()
predict_from_posterior(t_pred, size=1000)
class sccala.interplib.interpolators.Vel_Interpolator(data, data_error, t_grid, num_live_points=800, disable_mean_fit=True, disable_white_noise_fit=True)

Bases: Interpolator

data
data_error
t_grid
num_live_points = 800
disable_mean_fit = True
disable_white_noise_fit = True
parameters = []
gp
prior_transform(cube)
reject_invalid(data_int, dint, no_reject)
_print_predicting()
class sccala.interplib.interpolators.AE_Interpolator(data, data_error, t_grid, num_live_points=800, disable_mean_fit=True, disable_white_noise_fit=True)

Bases: Interpolator

data
data_error
t_grid
num_live_points = 800
disable_mean_fit = True
disable_white_noise_fit = True
parameters = []
gp
reject_invalid(data_int, dint, no_reject)
prior_transform(cube)
_print_predicting()